
Department of CSE Page 1 of 70

 UNIT-4

 Collection Framework in Java

Collections in java is a framework that provides an architecture to store and manipulate the

group of objects.

All the operations that you perform on a data such as searching, sorting, insertion, manipulation,

deletion etc. can be performed by Java Collections.

Java Collection simply means a single unit of objects. Java Collection framework provides many

interfaces (Set, List, Queue, Deque etc.) and classes (ArrayList, Vector, LinkedList,

PriorityQueue, HashSet, LinkedHashSet, TreeSet etc).

What is framework in java

o provides readymade architecture.

o represents set of classes and interface.

o is optional.

What is Collection framework

Collection framework represents a unified architecture for storing and manipulating group of

objects. It has:

1. Interfaces and its implementations i.e. classes

2. Algorithm

Department of CSE Page 2 of 70

Hierarchy of Collection Framework

Java ArrayList class

Java ArrayList class uses a dynamic array for storing the elements. It inherits AbstractList class

and implements List interface.

The important points about Java ArrayList class are:

o Java ArrayList class can contain duplicate elements.

o Java ArrayList class maintains insertion order.

o Java ArrayList class is non synchronized.

o Java ArrayList allows random access because array works at the index basis.

o In Java ArrayList class, manipulation is slow because a lot of shifting needs to be occurred

if any element is removed from the array list.

Department of CSE Page 3 of 70

ArrayList class declaration

Let's see the declaration for java.util.ArrayList class.

Constructors of Java ArrayList

Constructor Description

ArrayList()

It is used to build an empty array list.

ArrayList(Collection

c)

It is used to build an array list that is initialized with the

elements of the collection c.

ArrayList(int

capacity)

It is used to build an array list that has the specified

initial capacity.

Java ArrayList Example

import java.util.*;

class TestCollection1{

public static void main(String args[]){

ArrayList<String> list=new ArrayList<String>();//Creating arraylist

list.add("Ravi");//Adding object in arraylist

list.add("Vijay");

list.add("Ravi");

list.add("Ajay");

//Traversing list through Iterator

Iterator itr=list.iterator();

while(itr.hasNext()){

System.out.println(itr.next()); } }}

Ravi

Vijay

Ravi

Ajay

Department of CSE Page 4 of 70

vector

ArrayList and Vector both implements List interface and maintains insertion order.

But there are many differences between ArrayList and Vector classes that are given below.

ArrayList Vector

1) ArrayList is not synchronized.

Vector is synchronized.

2)ArrayList increments 50% of

current array size if number of

element exceeds from its capacity.

Vector increments 100% means doubles the array

size if total number of element exceeds than its

capacity.

3)ArrayList is not a legacy class,

it is introduced in JDK 1.2.

Vector is a legacy class.

4) ArrayList is fast because it is

non-synchronized.

Vector is slow because it is synchronized i.e. in

multithreading environment, it will hold the other

threads in runnable or non-runnable state until

current thread releases the lock of object.

5) ArrayLis tuses Iterator interface

to traverse the elements.

Vector uses Enumeration interface to traverse the

elements. But it can use Iterator also.

Example of Java Vector

Let's see a simple example of java Vector class that uses Enumeration interface.

1. import java.util.*;

2. class TestVector1{

3. public static void main(String args[]){

4. Vector<String> v=new Vector<String>();//creating vector

5. v.add("umesh");//method of Collection

6. v.addElement("irfan");//method of Vector

7. v.addElement("kumar");

8. //traversing elements using Enumeration

Department of CSE Page 5 of 70

9. Enumeration e=v.elements();

10. while(e.hasMoreElements()){

11. System.out.println

(e.nextElement()); 12. }

} }

Output:

Java LinkedList class:

Java LinkedList class uses a doubly linked list to store the elements. It provides a linked-list

data structure. It inherits the AbstractList class and implements List and Deque interfaces.

The important points about Java LinkedList are:

o Java LinkedList class can contain duplicate elements.

o Java LinkedList class maintains insertion order.

o Java LinkedList class is non synchronized.

umesh

irfan

kumar

Department of CSE Page 6 of 70

o In Java LinkedList class, manipulation is fast because no shifting needs to occur.

o Java LinkedList class can be used as a list, stack or queue.

Hierarchy of LinkedList class

As shown in the above diagram, Java LinkedList class extends AbstractSequentialList class

and implements List and Deque interfaces.

Doubly Linked List

In the case of a doubly linked list, we can add or remove elements from both sides.

44.7M

993

OOPs Concepts in Java

LinkedList class declaration

Let's see the declaration for java.util.LinkedList class.

public class LinkedList<E> extends AbstractSequentialList<E> implements List<E>, Dequ

e<E>, Cloneable, Serializable

Constructors of Java LinkedList

Constructor Description

LinkedList() It is used to construct an empty list.

LinkedList(Collection<?

extends E> c)

It is used to construct a list containing the elements of

the specified collection, in the order, they are returned

by the collection's iterator.

Java LinkedList Example:

import java.util.*;

public class LinkedList1{

 public static void main(String args[]){

 LinkedList<String> al=new LinkedList<String>();

 al.add("Ravi");

 al.add("Vijay");

Department of CSE Page 7 of 70

 al.add("Ravi");

 al.add("Ajay");

 Iterator<String> itr=al.iterator();

 while(itr.hasNext()){

 System.out.println(itr.next());

 }

 }

}

Output: Ravi

 Vijay

 Ravi

 Ajay

Java Hashtable class

Java Hashtable class implements a hashtable, which maps keys to values. It

inherits Dictionary class and implements the Map interface.

The important points about Java Hashtable class are:

o A Hashtable is an array of list. Each list is known as a bucket. The

position of bucket is identified by calling the hashcode() method. A

Hashtable contains values based on the key.

o It contains only unique elements.

o It may have not have any null key or value.

o It is synchronized.

Department of CSE Page 8 of 70

Hashtable class declaration

Let's see the declaration for java.util.Hashtable class.

1. public class Hashtable<K,V> extends Dictionary<K,V> implements

Map<K,V>, Cloneable, Ser ializable

Hashtable class Parameters
Let's see the Parameters for java.util.Hashtable class

o K: It is the type of keys maintained by this map.

o V: It is the type of mapped values.

Department of CSE Page 9 of 70

Constructors of Java Hashtable class

Constructor Description

Hashtable()

It is the default constructor of hash table it instantiates the

Hashtable class.

Hashtable(int size)

It is used to accept an integer parameter and creates a hash table

that has an initial size specified by integer value size.

Hashtable(int size, float

fillRatio)

It is used to create a hash table that has an initial size specified by

size and a fill ratio specified by fillRatio.

Java Hashtable Example

import java.util.*;

class TestCollection16{

public static void main(String args[]){

Hashtable<Integer,String> hm=new Hashtable<Integer,String>();

hm.put(100,"Amit");

hm.put(102,"Ravi");

hm.put(101,"Vijay");

hm.put(103,"Rahul");

for(Map.Entry m:hm.entrySet()){

System.out.println(m.getKey()+" "+m.getValue());

} } }

Output:

103 Rahul

102 Ravi

101 Vijay

100 Amit

Department of CSE Page 10 of 70

Java TreeSet class:

Java TreeSet class implements the Set interface that uses a tree for storage. It inherits AbstractSet class and

implements the NavigableSet interface. The objects of the TreeSet class are stored in ascending order.

The important points about Java TreeSet class are:

o Java TreeSet class contains unique elements only like HashSet.

o Java TreeSet class access and retrieval times are quiet fast.

o Java TreeSet class doesn't allow null element.

o Java TreeSet class is non synchronized.

o Java TreeSet class maintains ascending order.

Hierarchy of TreeSet class

As shown in the above diagram, Java TreeSet class implements the NavigableSet interface. The NavigableSet

interface extends SortedSet, Set, Collection and Iterable interfaces in hierarchical order.

TreeSet class declaration

Let's see the declaration for java.util.TreeSet class.

47.1M

Department of CSE Page 11 of 70

938

Exception Handling in Java - Javatpoint

public class TreeSet<E> extends AbstractSet<E> implements NavigableSet<E>, Cloneable, Serializable

Constructors of Java TreeSet class

Constructor Description

TreeSet() It is used to construct an empty tree set that will be

sorted in ascending order according to the natural

order of the tree set.

TreeSet(Collection<? extends

E> c)

It is used to build a new tree set that contains the

elements of the collection c.

TreeSet(Comparator<? super

E> comparator)

It is used to construct an empty tree set that will be

sorted according to given comparator.

TreeSet(SortedSet<E> s) It is used to build a TreeSet that contains the elements

of the given SortedSet.

Java TreeSet Examples

Java TreeSet Example 1:

Let's see a simple example of Java TreeSet.

import java.util.*;

class TreeSet1{

 public static void main(String args[]){

 //Creating and adding elements

 TreeSet<String> al=new TreeSet<String>();

 al.add("Ravi");

 al.add("Vijay");

 al.add("Ravi");

 al.add("Ajay");

 //Traversing elements

 Iterator<String> itr=al.iterator();

 while(itr.hasNext()){

 System.out.println(itr.next());

 }

 }

}

Output:

Ajay

Ravi

Vijay

Department of CSE Page 12 of 70

Java TreeSet Example 2:

Let's see an example of traversing elements in descending order.

import java.util.*;

class TreeSet2{

 public static void main(String args[]){

 TreeSet<String> set=new TreeSet<String>();

 set.add("Ravi");

 set.add("Vijay");

 set.add("Ajay");

 System.out.println("Traversing element through Iterator in descending order");

 Iterator i=set.descendingIterator();

 while(i.hasNext())

 {

 System.out.println(i.next());

 }

 }

}

Output:

Traversing element through Iterator in descending order

Vijay

Ravi

Ajay

Traversing element through NavigableSet in descending order

Vijay

Ravi

Ajay

PriorityQueue class:

The PriorityQueue class provides the facility of using queue. But it does not orders the elements in FIFO

manner. It inherits AbstractQueue class.

PriorityQueue class declaration

Let's see the declaration for java.util.PriorityQueue class.

Department of CSE Page 13 of 70

public class PriorityQueue<E> extends AbstractQueue<E> implements Serializable

Java PriorityQueue Example

import java.util.*;

class TestCollection12{

public static void main(String args[]){

PriorityQueue<String> queue=new PriorityQueue<String>();

queue.add("Amit");

queue.add("Vijay");

queue.add("Karan");

queue.add("Jai");

queue.add("Rahul");

System.out.println("head:"+queue.element());

System.out.println("head:"+queue.peek());

System.out.println("iterating the queue elements:");

Iterator itr=queue.iterator();

while(itr.hasNext()){

System.out.println(itr.next());

}

queue.remove();

queue.poll();

System.out.println("after removing two elements:");

Iterator<String> itr2=queue.iterator();

while(itr2.hasNext()){

System.out.println(itr2.next());

}

}

}

Output:head:Amit

 head:Amit

 iterating the queue elements:

 Amit

 Jai

 Karan

 Vijay

 Rahul

 after removing two elements:

 Karan

 Rahul

 Vijay

Department of CSE Page 14 of 70

ArrayDeque class

The ArrayDeque class provides the facility of using deque and resizable-array. It inherits AbstractCollection

class and implements the Deque interface.

The important points about ArrayDeque class are:

o Unlike Queue, we can add or remove elements from both sides.

o Null elements are not allowed in the ArrayDeque.

o ArrayDeque is not thread safe, in the absence of external synchronization.

o ArrayDeque has no capacity restrictions.

o ArrayDeque is faster than LinkedList and Stack.

ArrayDeque Hierarchy

The hierarchy of ArrayDeque class is given in the figure displayed at the right side of the page.

45.2M

906

C++ vs Java

ArrayDeque class declaration

Let's see the declaration for java.util.ArrayDeque class.

public class ArrayDeque<E> extends AbstractCollection<E> implements Deque<E>, Cloneable, Serializable

Java ArrayDeque Example

import java.util.*;

public class ArrayDequeExample {

 public static void main(String[] args) {

 //Creating Deque and adding elements

 Deque<String> deque = new ArrayDeque<String>();

 deque.add("Ravi");

 deque.add("Vijay");

 deque.add("Ajay");

 //Traversing elements

 for (String str : deque) {

 System.out.println(str);

 }

 }

}

Department of CSE Page 15 of 70

Output:

Ravi

Vijay

Ajay

Java ArrayDeque Example: offerFirst() and pollLast()

import java.util.*;

public class DequeExample {

public static void main(String[] args) {

 Deque<String> deque=new ArrayDeque<String>();

 deque.offer("arvind");

 deque.offer("vimal");

 deque.add("mukul");

 deque.offerFirst("jai");

 System.out.println("After offerFirst Traversal...");

 for(String s:deque){

 System.out.println(s);

 }

 //deque.poll();

 //deque.pollFirst();//it is same as poll()

 deque.pollLast();

 System.out.println("After pollLast() Traversal...");

 for(String s:deque){

 System.out.println(s);

 }

}

}

Output:

After offerFirst Traversal...

jai

arvind

vimal

mukul

After pollLast() Traversal...

jai

arvind

vimal

Department of CSE Page 16 of 70

Java ArrayDeque Example: Book

import java.util.*;

class Book {

int id;

String name,author,publisher;

int quantity;

public Book(int id, String name, String author, String publisher, int quantity) {

 this.id = id;

 this.name = name;

 this.author = author;

 this.publisher = publisher;

 this.quantity = quantity;

}

}

public class ArrayDequeExample {

public static void main(String[] args) {

 Deque<Book> set=new ArrayDeque<Book>();

 //Creating Books

 Book b1=new Book(101,"Let us C","Yashwant Kanetkar","BPB",8);

 Book b2=new Book(102,"Data Communications & Networking","Forouzan","Mc Graw Hill",4);

 Book b3=new Book(103,"Operating System","Galvin","Wiley",6);

 //Adding Books to Deque

 set.add(b1);

 set.add(b2);

 set.add(b3);

 //Traversing ArrayDeque

 for(Book b:set){

 System.out.println(b.id+" "+b.name+" "+b.author+" "+b.publisher+" "+b.quantity);

 }

}

}

Output:

101 Let us C Yashwant Kanetkar BPB 8

102 Data Communications & Networking Forouzan Mc Graw Hill 4

103 Operating System Galvin Wiley 6

Department of CSE Page 17 of 70

Iterator

It is a universal iterator as we can apply it to any Collection object. By using Iterator, we can

perform both read and remove operations. It is improved version of Enumeration with additional

functionality of remove-ability of a element.

Iterator must be used whenever we want to enumerate elements in all Collection framework

implemented interfaces like Set, List, Queue, Deque and also in all implemented classes of Map

interface. Iterator is the only cursor available for entire collection framework.

Iterator object can be created by calling iterator() method present in Collection interface.

Iterator interface defines three methods:

remove() method can throw two exceptions

 UnsupportedOperationException : If the remove operation is not supported by this iterator
 IllegalStateException : If the next method has not yet been called, or the remove method

has already been called after the last call to the next method

Limitations of Iterator:

 Only forward direction iterating is possible.
 Replacement and addition of new element is not supported by Iterator.

How to use Java Iterator?

When a user needs to use the Java Iterator, then it's compulsory for them to make an instance of the Iterator

interface from the collection of objects they desire to traverse over. After that, the received Iterator maintains

the trail of the components in the underlying collection to make sure that the user will traverse over each of the

elements of the collection of objects.

// Returns true if the iteration has more elements

public boolean hasNext();

// Returns the next element in the iteration

// It throws NoSuchElementException if no more

// element present

public Object next();

// Remove the next element in the iteration

// This method can be called only once per call

// to next()

public void remove();

// Here "c" is any Collection object. itr is of

// type Iterator interface and refers to "c"

Iterator itr = c.iterator();

Department of CSE Page 18 of 70

If the user modifies the underlying collection while traversing over an Iterator leading to that collection, then

the Iterator will typically acknowledge it and will throw an exception in the next time when the user will

attempt to get the next component from the Iterator.

Java Iterator Methods

The following figure perfectly displays the class diagram of the Java Iterator interface. It contains a total of four

methods that are:

o hasNext()

o next()

o remove()

o forEachRemaining()

The forEachRemaining() method was added in the Java 8. Let's discuss each method in detail.

boolean hasNext(): The method does not accept any parameter. It returns true if there are more elements left in

the iteration. If there are no more elements left, then it will return false.

If there are no more elements left in the iteration, then there is no need to call the next() method. In simple

words, we can say that the method is used to determine whether the next() method is to be called or not.

E next(): It is similar to hasNext() method. It also does not accept any parameter. It returns E, i.e., the next

element in the traversal. If the iteration or collection of objects has no more elements left to iterate, then it

throws the NoSuchElementException.

default void remove(): This method also does not require any parameters. There is no return type of this

method. The main function of this method is to remove the last element returned by the iterator traversing

through the underlying collection. The remove () method can be requested hardly once per the next () method

call. If the iterator does not support the remove operation, then it throws the UnSupportedOperationException.

It also throws the IllegalStateException if the next method is not yet called.

default void forEachRemaining(Consumer action): It is the only method of Java Iterator that takes a

parameter. It accepts action as a parameter. Action is nothing but that is to be performed. There is no return

type of the method. This method performs the particularized operation on all of the left components of the

collection until all the components are consumed or the action throws an exception. Exceptions thrown by

action are delivered to the caller. If the action is null, then it throws a NullPointerException.

Example of Java Iterator

Now it's time to execute a Java program to illustrate the advantage of the Java Iterator interface. The below

code produces an ArrayList of city names. Then we initialize an iterator applying the iterator () method of the

ArrayList. After that, the list is traversed to represent each element.

JavaIteratorExample.java

Department of CSE Page 19 of 70

import java.io.*;

import java.util.*;

public class JavaIteratorExample {

 public static void main(String[] args)

 {

 ArrayList<String> cityNames = new ArrayList<String>();

 cityNames.add("Delhi");

 cityNames.add("Mumbai");

 cityNames.add("Kolkata");

 cityNames.add("Chandigarh");

 cityNames.add("Noida");

 // Iterator to iterate the cityNames

 Iterator iterator = cityNames.iterator();

 System.out.println("CityNames elements : ");

 while (iterator.hasNext())

 System.out.print(iterator.next() + " ");

 System.out.println();

 }

}

Output:

CityNames elements:

Delhi Mumbai Kolkata Chandigarh Noida

Java For-each Loop | Enhanced For Loop

The Java for-each loop or enhanced for loop is introduced since J2SE 5.0. It provides an alternative approach to

traverse the array or collection in Java. It is mainly used to traverse the array or collection elements. The

advantage of the for-each loop is that it eliminates the possibility of bugs and makes the code more readable. It

is known as the for-each loop because it traverses each element one by one.

The drawback of the enhanced for loop is that it cannot traverse the elements in reverse order. Here, you do not

have the option to skip any element because it does not work on an index basis. Moreover, you cannot traverse

the odd or even elements only.

But, it is recommended to use the Java for-each loop for traversing the elements of array and collection because

it makes the code readable.

Department of CSE Page 20 of 70

Advantages

o It makes the code more readable.

o It eliminates the possibility of programming errors.

Syntax

The syntax of Java for-each loop consists of data_type with the variable followed by a colon (:), then array or

collection.

for(data_type variable : array | collection){

//body of for-each loop

}

How it works?

The Java for-each loop traverses the array or collection until the last element. For each element, it stores the

element in the variable and executes the body of the for-each loop.

For-each loop Example: Traversing the array elements
//An example of Java for-each loop

class ForEachExample1{

 public static void main(String args[]){

 //declaring an array

 int arr[]={12,13,14,44};

 //traversing the array with for-each loop

 for(int i:arr){

 System.out.println(i);

 }

 }

}

Output:

12

12

14

44

Department of CSE Page 21 of 70

Map Interface in Java

The map interface is present in java.util package represents a mapping between a key and a value. The Map

interface is not a subtype of the Collection interface. Therefore it behaves a bit differently from the rest of the

collection types. A map contains unique keys.

Geeks, the brainstormer should have been why and when to use Maps?

Maps are perfect to use for key-value association mapping such as dictionaries. The maps are used to perform

lookups by keys or when someone wants to retrieve and update elements by keys. Some common scenarios are

as follows:

 A map of error codes and their descriptions.

 A map of zip codes and cities.

 A map of managers and employees. Each manager (key) is associated with a list of employees (value) he

manages.

 A map of classes and students. Each class (key) is associated with a list of students (value).

Creating Map Objects

Since Map is an interface, objects cannot be created of the type map. We always need a class that extends this

map in order to create an object. And also, after the introduction of Generics in Java 1.5, it is possible to restrict

the type of object that can be stored in the Map.

Syntax: Defining Type-safe Map

Map hm = new HashMap();

// Obj is the type of the object to be stored in Map

Characteristics of a Map Interface

https://www.geeksforgeeks.org/java-util-package-java/
https://www.geeksforgeeks.org/collections-in-java-2/
https://www.geeksforgeeks.org/interfaces-in-java/
https://www.geeksforgeeks.org/generics-in-java/

Department of CSE Page 22 of 70

1. A Map cannot contain duplicate keys and each key can map to at most one value. Some implementations

allow null key and null values like the HashMap and LinkedHashMap, but some do not like the TreeMap.

2. The order of a map depends on the specific implementations. For

example, TreeMap and LinkedHashMap have predictable orders, while HashMap does not.

3. There are two interfaces for implementing Map in java. They are Map and SortedMap, and three classes:

HashMap, TreeMap, and LinkedHashMap.

Methods in Map Interface

Method Action Performed

clear()

This method is used to clear and remove all of the elements or

mappings from a specified Map collection.

containsKey(Object)

This method is used to check whether a particular key is being

mapped into the Map or not. It takes the key element as a parameter

and returns True if that element is mapped in the map.

containsValue(Object)

This method is used to check whether a particular value is being

mapped by a single or more than one key in the Map. It takes the

value as a parameter and returns True if that value is mapped by any

of the key in the map.

entrySet()

This method is used to create a set out of the same elements

contained in the map. It basically returns a set view of the map or we

can create a new set and store the map elements into them.

equals(Object)

This method is used to check for equality between two maps. It

verifies whether the elements of one map passed as a parameter is

equal to the elements of this map or not.

get(Object)

This method is used to retrieve or fetch the value mapped by a

particular key mentioned in the parameter. It returns NULL when

the map contains no such mapping for the key.

hashCode()

This method is used to generate a hashCode for the given map

containing keys and values.

isEmpty()

This method is used to check if a map is having any entry for key

and value pairs. If no mapping exists, then this returns true.

keySet()

This method is used to return a Set view of the keys contained in

this map. The set is backed by the map, so changes to the map are

reflected in the set, and vice-versa.

put(Object, Object)

This method is used to associate the specified value with the

specified key in this map.

https://www.geeksforgeeks.org/java-util-hashmap-in-java/
https://www.geeksforgeeks.org/linkedhashmap-class-java-examples/
https://www.geeksforgeeks.org/treemap-in-java/
https://www.geeksforgeeks.org/treemap-in-java/
https://www.geeksforgeeks.org/linkedhashmap-class-java-examples/
https://www.geeksforgeeks.org/java-util-hashmap-in-java/
https://www.geeksforgeeks.org/sortedmap-java-examples/
https://www.geeksforgeeks.org/map-clear-method-in-java-with-example/
https://www.geeksforgeeks.org/map-containskey-method-in-java-with-examples/
https://www.geeksforgeeks.org/map-containsvalue-method-in-java-with-examples/
https://www.geeksforgeeks.org/map-entryset-method-in-java-with-examples/
https://www.geeksforgeeks.org/map-equals-method-in-java-with-examples/
https://www.geeksforgeeks.org/map-get-method-in-java-with-examples/
https://www.geeksforgeeks.org/map-hashcode-method-in-java-with-examples/
https://www.geeksforgeeks.org/map-isempty-method-in-java-with-examples/
https://www.geeksforgeeks.org/map-keyset-method-in-java-with-examples/
https://www.geeksforgeeks.org/map-put-method-in-java-with-examples/

Department of CSE Page 23 of 70

Method Action Performed

putAll(Map)

This method is used to copy all of the mappings from the specified

map to this map.

remove(Object)

This method is used to remove the mapping for a key from this map

if it is present in the map.

size()

This method is used to return the number of key/value pairs

available in the map.

values()

This method is used to create a collection out of the values of the

map. It basically returns a Collection view of the values in the

HashMap.

getOrDefault(Object key, V

defaultValue)

Returns the value to which the specified key is mapped, or

defaultValue if this map contains no mapping for the key.

merge(K key, V value, BiFunction<?

super V,? super V,? extends V>

remappingFunction)

If the specified key is not already associated with a value or is

associated with null, associates it with the given non-null value.

putIfAbsent(K key, V value)

If the specified key is not already associated with a value (or is

mapped to null) associates it with the given value and returns null,

else returns the curassociaterent value.

 Example:

 Java

// Java Program to Demonstrate

// Working of Map interface

// Importing required classes

import java.util.*;

// Main class

class GFG {

https://www.geeksforgeeks.org/map-putall-method-in-java-with-examples/
https://www.geeksforgeeks.org/map-remove-method-in-java-with-examples/
https://www.geeksforgeeks.org/hashmap-size-method-in-java/
https://www.geeksforgeeks.org/hashmap-values-method-in-java/
https://www.geeksforgeeks.org/hashmap-getordefaultkey-defaultvalue-method-in-java-with-examples/
https://www.geeksforgeeks.org/hashmap-getordefaultkey-defaultvalue-method-in-java-with-examples/
https://www.geeksforgeeks.org/hashmap-mergekey-value-bifunction-method-in-java-with-examples/
https://www.geeksforgeeks.org/hashmap-mergekey-value-bifunction-method-in-java-with-examples/
https://www.geeksforgeeks.org/hashmap-mergekey-value-bifunction-method-in-java-with-examples/
https://www.geeksforgeeks.org/hashmap-putifabsentkey-value-method-in-java-with-examples/

Department of CSE Page 24 of 70

 // Main driver method

 public static void main(String args[])

 {

 // Creating an empty HashMap

 Map<String, Integer> hm

 = new HashMap<String, Integer>();

 // Inserting pairs in above Map

 // using put() method

 hm.put("a", new Integer(100));

 hm.put("b", new Integer(200));

 hm.put("c", new Integer(300));

 hm.put("d", new Integer(400));

 // Traversing through Map using for-each loop

 for (Map.Entry<String, Integer> me :

 hm.entrySet()) {

 // Printing keys

 System.out.print(me.getKey() + ":");

 System.out.println(me.getValue());

Department of CSE Page 25 of 70

 }

 }

}

Output:

a:100

b:200

c:300

d:400

Classes that implement the Map interface are depicted in the below media and described later as follows:

Class 1: HashMap

HashMap is a part of Java’s collection since Java 1.2. It provides the basic implementation of the Map interface

of Java. It stores the data in (Key, Value) pairs. To access a value one must know its key. This class uses a

technique called Hashing. Hashing is a technique of converting a large String to a small String that represents

the same String. A shorter value helps in indexing and faster searches. Let’s see how to create a map object

using this class.

Example

https://www.geeksforgeeks.org/java-util-hashmap-in-java-with-examples/
https://www.geeksforgeeks.org/hashing-data-structure/

Department of CSE Page 26 of 70

 Java

// Java Program to illustrate the Hashmap Class

// Importing required classes

import java.util.*;

// Main class

public class GFG {

 // Main driver method

 public static void main(String[] args)

 {

 // Creating an empty HashMap

 Map<String, Integer> map = new HashMap<>();

 // Inserting entries in the Map

 // using put() method

 map.put("vishal", 10);

 map.put("sachin", 30);

 map.put("vaibhav", 20);

Department of CSE Page 27 of 70

 // Iterating over Map

 for (Map.Entry<String, Integer> e : map.entrySet())

 // Printing key-value pairs

 System.out.println(e.getKey() + " "

 + e.getValue());

 }

}

Output

vaibhav 20

vishal 10

sachin 30

Class 2: LinkedHashMap

LinkedHashMap is just like HashMap with an additional feature of maintaining an order of elements inserted

into it. HashMap provided the advantage of quick insertion, search, and deletion but it never maintained the

track and order of insertion which the LinkedHashMap provides where the elements can be accessed in their

insertion order. Let’s see how to create a map object using this class.

Example

 Java

// Java Program to Illustrate the LinkedHashmap Class

// Importing required classes

import java.util.*;

// Main class

https://www.geeksforgeeks.org/linkedhashmap-class-java-examples/

Department of CSE Page 28 of 70

public class GFG {

 // Main driver method

 public static void main(String[] args)

 {

 // Creating an empty LinkedHashMap

 Map<String, Integer> map = new LinkedHashMap<>();

 // Inserting pair entries in above Map

 // using put() method

 map.put("vishal", 10);

 map.put("sachin", 30);

 map.put("vaibhav", 20);

 // Iterating over Map

 for (Map.Entry<String, Integer> e : map.entrySet())

 // Printing key-value pairs

 System.out.println(e.getKey() + " "

 + e.getValue());

 }

Department of CSE Page 29 of 70

}

Output:

vishal 10

sachin 30

vaibhav 20

Class 3: TreeMap
The TreeMap in Java is used to implement the Map interface and NavigableMap along with the Abstract Class.

The map is sorted according to the natural ordering of its keys, or by a Comparator provided at map creation

time, depending on which constructor is used. This proves to be an efficient way of sorting and storing the key-

value pairs. The storing order maintained by the treemap must be consistent with equals just like any other

sorted map, irrespective of the explicit comparators. Let’s see how to create a map object using this class.

Example

 Java

// Java Program to Illustrate TreeMap Class

// Importing required classes

import java.util.*;

// Main class

public class GFG {

 // Main driver method

 public static void main(String[] args)

 {

 // Creating an empty TreeMap

https://www.geeksforgeeks.org/treemap-in-java/

Department of CSE Page 30 of 70

 Map<String, Integer> map = new TreeMap<>();

 // Inserting custom elements in the Map

 // using put() method

 map.put("vishal", 10);

 map.put("sachin", 30);

 map.put("vaibhav", 20);

 // Iterating over Map using for each loop

 for (Map.Entry<String, Integer> e : map.entrySet())

 // Printing key-value pairs

 System.out.println(e.getKey() + " "

 + e.getValue());

 }

}

Output:

sachin 30

vaibhav 20

vishal 10

Comparator Interface in Java with Examples :

A comparator interface is used to order the objects of user-defined classes. A comparator object is capable of

comparing two objects of the same class. Following function compare obj1 with obj2.

Syntax:

public int compare(Object obj1, Object obj2):

Department of CSE Page 31 of 70

Suppose we have an Array/ArrayList of our own class type, containing fields like roll no, name, address, DOB,

etc, and we need to sort the array based on Roll no or name?

Method 1: One obvious approach is to write our own sort() function using one of the standard algorithms. This

solution requires rewriting the whole sorting code for different criteria like Roll No. and Name.

Method 2: Using comparator interface- Comparator interface is used to order the objects of a user-defined

class. This interface is present in java.util package and contains 2 methods compare(Object obj1, Object obj2)

and equals(Object element). Using a comparator, we can sort the elements based on data members. For

instance, it may be on roll no, name, age, or anything else.

Method of Collections class for sorting List elements is used to sort the elements of List by the given

comparator.

public void sort(List list, ComparatorClass c)

To sort a given List, ComparatorClass must implement a Comparator interface.

How do the sort() method of Collections class work?

Internally the Sort method does call Compare method of the classes it is sorting. To compare two elements, it

asks “Which is greater?” Compare method returns -1, 0, or 1 to say if it is less than, equal, or greater to the

other. It uses this result to then determine if they should be swapped for their sort.

Example

 Java

// Java Program to Demonstrate Working of

// Comparator Interface

// Importing required classes

import java.io.*;

import java.lang.*;

import java.util.*;

// Class 1

// A class to represent a Student

class Student {

Department of CSE Page 32 of 70

 // Attributes of a student

 int rollno;

 String name, address;

 // Constructor

 public Student(int rollno, String name, String address)

 {

 // This keyword refers to current instance itself

 this.rollno = rollno;

 this.name = name;

 this.address = address;

 }

 // Method of Student class

 // To print student details in main()

 public String toString()

 {

 // Returning attributes of Student

 return this.rollno + " " + this.name + " "

Department of CSE Page 33 of 70

 + this.address;

 }

}

// Class 2

// Helper class implementing Comparator interface

class Sortbyroll implements Comparator<Student> {

 // Method

 // Sorting in ascending order of roll number

 public int compare(Student a, Student b)

 {

 return a.rollno - b.rollno;

 }

}

// Class 3

// Helper class implementing Comparator interface

class Sortbyname implements Comparator<Student> {

 // Method

Department of CSE Page 34 of 70

 // Sorting in ascending order of name

 public int compare(Student a, Student b)

 {

 return a.name.compareTo(b.name);

 }

}

// Class 4

// Main class

class GFG {

 // Main driver method

 public static void main(String[] args)

 {

 // Creating an empty ArrayList of Student type

 ArrayList<Student> ar = new ArrayList<Student>();

 // Adding entries in above List

 // using add() method

 ar.add(new Student(111, "Mayank", "london"));

Department of CSE Page 35 of 70

 ar.add(new Student(131, "Anshul", "nyc"));

 ar.add(new Student(121, "Solanki", "jaipur"));

 ar.add(new Student(101, "Aggarwal", "Hongkong"));

 // Display message on console for better readability

 System.out.println("Unsorted");

 // Iterating over entries to print them

 for (int i = 0; i < ar.size(); i++)

 System.out.println(ar.get(i));

 // Sorting student entries by roll number

 Collections.sort(ar, new Sortbyroll());

 // Display message on console for better readability

 System.out.println("\nSorted by rollno");

 // Again iterating over entries to print them

 for (int i = 0; i < ar.size(); i++)

 System.out.println(ar.get(i));

 // Sorting student entries by name

Department of CSE Page 36 of 70

 Collections.sort(ar, new Sortbyname());

 // Display message on console for better readability

 System.out.println("\nSorted by name");

 // // Again iterating over entries to print them

 for (int i = 0; i < ar.size(); i++)

 System.out.println(ar.get(i));

 }

}

Output

Unsorted

111 Mayank london

131 Anshul nyc

121 Solanki jaipur

101 Aggarwal Hongkong

Sorted by rollno

101 Aggarwal Hongkong

111 Mayank london

121 Solanki jaipur

131 Anshul nyc

Sorted by name

101 Aggarwal Hongkong

131 Anshul nyc

111 Mayank london

121 Solanki jaipur

By changing the return value inside the compare method, you can sort in any order that you wish to, for

example: For descending order just change the positions of ‘a’ and ‘b’ in the above compare method.

Department of CSE Page 37 of 70

Sort collection by more than one field

In the previous example, we have discussed how to sort the list of objects on the basis of a single field using

Comparable and Comparator interface But, what if we have a requirement to sort ArrayList objects in

accordance with more than one field like firstly, sort according to the student name and secondly, sort

according to student age.

Example

 Java

// Java Program to Demonstrate Working of

// Comparator Interface Via More than One Field

// Importing required classes

import java.util.ArrayList;

import java.util.Collections;

import java.util.Comparator;

import java.util.Iterator;

import java.util.List;

// Class 1

// Helper class representing a Student

class Student {

 // Attributes of student

 String Name;

 int Age;

Department of CSE Page 38 of 70

 // Parameterized constructor

 public Student(String Name, Integer Age)

 {

 // This keyword refers to current instance itself

 this.Name = Name;

 this.Age = Age;

 }

 // Getter setter methods

 public String getName() { return Name; }

 public void setName(String Name) { this.Name = Name; }

 public Integer getAge() { return Age; }

 public void setAge(Integer Age) { this.Age = Age; }

 // Method

 // Overriding toString() method

 @Override public String toString()

Department of CSE Page 39 of 70

 {

 return "Customer{"

 + "Name=" + Name + ", Age=" + Age + '}';

 }

 // Class 2

 // Helper class implementing Comparator interface

 static class CustomerSortingComparator

 implements Comparator<Student> {

 // Method 1

 // To compare customers

 @Override

 public int compare(Student customer1,

 Student customer2)

 {

 // Comparing customers

 int NameCompare = customer1.getName().compareTo(

 customer2.getName());

 int AgeCompare = customer1.getAge().compareTo(

Department of CSE Page 40 of 70

 customer2.getAge());

 // 2nd level comparison

 return (NameCompare == 0) ? AgeCompare

 : NameCompare;

 }

 }

 // Method 2

 // Main driver method

 public static void main(String[] args)

 {

 // Create an empty ArrayList

 // to store Student

 List<Student> al = new ArrayList<>();

 // Create customer objects

 // using constructor initialization

 Student obj1 = new Student("Ajay", 27);

 Student obj2 = new Student("Sneha", 23);

 Student obj3 = new Student("Simran", 37);

Department of CSE Page 41 of 70

 Student obj4 = new Student("Ajay", 22);

 Student obj5 = new Student("Ajay", 29);

 Student obj6 = new Student("Sneha", 22);

 // Adding customer objects to ArrayList

 // using add() method

 al.add(obj1);

 al.add(obj2);

 al.add(obj3);

 al.add(obj4);

 al.add(obj5);

 al.add(obj6);

 // Iterating using Iterator

 // before Sorting ArrayList

 Iterator<Student> custIterator = al.iterator();

 // Display message

 System.out.println("Before Sorting:\n");

 // Holds true till there is single element

 // remaining in List

Department of CSE Page 42 of 70

 while (custIterator.hasNext()) {

 // Iterating using next() method

 System.out.println(custIterator.next());

 }

 // Sorting using sort method of Collections class

 Collections.sort(al,

 new CustomerSortingComparator());

 // Display message only

 System.out.println("\n\nAfter Sorting:\n");

 // Iterating using enhanced for-loop

 // after Sorting ArrayList

 for (Student customer : al) {

 System.out.println(customer);

 }

 }

}

Output
Before Sorting:

Customer{Name=Ajay, Age=27}

Department of CSE Page 43 of 70

Customer{Name=Sneha, Age=23}

Customer{Name=Simran, Age=37}

Customer{Name=Ajay, Age=22}

Customer{Name=Ajay, Age=29}

Customer{Name=Sneha, Age=22}

After Sorting:

Customer{Name=Ajay, Age=22}

Customer{Name=Ajay, Age=27}

Customer{Name=Ajay, Age=29}

Customer{Name=Simran, Age=37}

Customer{Name=Sneha, Age=22}

Customer{Name=Sneha, Age=23}

Collection algorithms in java

The java collection framework defines several algorithms as static methods that can be used with collections

and map objects.

All the collection algorithms in the java are defined in a class called Collections which defined in

the java.util package.

All these algorithms are highly efficient and make coding very easy. It is better to use them than trying to re-

implement them.

The collection framework has the following methods as algorithms.

Method Description

void sort(List list) Sorts the elements of the list as determined by their natural

ordering.

void sort(List list, Comparator comp) Sorts the elements of the list as determined by Comparator

comp.

Department of CSE Page 44 of 70

Method Description

void reverse(List list) Reverses all the elements sequence in list.

void rotate(List list, int n) Rotates list by n places to the right. To rotate left, use a

negative value for n.

void shuffle(List list) Shuffles the elements in list.

void shuffle(List list, Random r) Shuffles the elements in the list by using r as a source of

random numbers.

void copy(List list1, List list2) Copies the elements of list2 to list1.

List nCopies(int num, Object obj) Returns num copies of obj contained in an immutable list.

num can not be zero or negative.

void swap(List list, int idx1, int idx2) Exchanges the elements in the list at the indices specified by

idx1 and idx2.

int binarySearch(List list, Object value) Returns the position of value in the list (must be in the sorted

order), or -1 if value is not found.

int binarySearch(List list, Object value,

Comparator c)

Returns the position of value in the list ordered according to c,

or -1 if value is not found.

int indexOfSubList(List list, List subList) Returns the index of the first match of subList in the list, or -1

if no match is found.

int lastIndexOfSubList(List list, List subList) Returns the index of the last match of subList in the list, or -1

if no match is found.

Object max(Collection c) Returns the largest element from the collection c as

determined by natural ordering.

Object max(Collection c, Comparator comp) Returns the largest element from the collection c as

determined by Comparator comp.

Department of CSE Page 45 of 70

Method Description

Object min(Collection c) Returns the smallest element from the collection c as

determined by natural ordering.

Object min(Collection c, Comparator comp) Returns the smallest element from the collection c as

determined by Comparator comp.

void fill(List list, Object obj) Assigns obj to each element of the list.

boolean replaceAll(List list, Object old, Object

new)

Replaces all occurrences of old with new in the list.

Enumeration enumeration(Collection c) Returns an enumeration over Collection c.

ArrayList list(Enumeration enum) Returns an ArrayList that contains the elements of enum.

Set singleton(Object obj) Returns obj as an immutable set.

List singletonList(Object obj) Returns obj as an immutable list.

Map singletonMap(Object k, Object v) Returns the key(k)/value(v) pair as an immutable map.

Collection synchronizedCollection(Collection

c)

Returns a thread-safe collection backed by c.

List synchronizedList(List list) Returns a thread-safe list backed by list.

Map synchronizedMap(Map m) Returns a thread-safe map backed by m.

SortedMap

synchronizedSortedMap(SortedMap sm)

Returns a thread-safe SortedMap backed by sm.

Set synchronizedSet(Set s) Returns a thread-safe set backed by s.

SortedSet synchronizedSortedSet(SortedSet

ss)

Returns a thread-safe set backed by ss.

Department of CSE Page 46 of 70

Method Description

Collection unmodifiableCollection(Collection

c)

Returns an unmodifiable collection backed by c.

List unmodifiableList(List list) Returns an unmodifiable list backed by list.

Set unmodifiableSet(Set s) Returns an unmodifiable thread-safe set backed by s.

SortedSet unmodifiableSortedSet(SortedSet

ss)

Returns an unmodifiable set backed by ss.

Map unmodifiableMap(Map m) Returns an unmodifiable map backed by m.

SortedMap

unmodifiableSortedMap(SortedMap sm)

Returns an unmodifiable SortedMap backed by sm.

Let's consider an example program to illustrate Collections algorithms.

Example

import java.util.*;

public class CollectionAlgorithmsExample {

 public static void main(String[] args) {

 ArrayList list = new ArrayList();

 PriorityQueue queue = new PriorityQueue();

 HashSet set = new HashSet();

 HashMap map = new HashMap();

 Random num = new Random();

 for(int i = 0; i < 5; i++) {

 list.add(num.nextInt(100));

 queue.add(num.nextInt(100));

 set.add(num.nextInt(100));

Department of CSE Page 47 of 70

 map.put(i, num.nextInt(100));

 }

 System.out.println("List => " + list);

 System.out.println("Queue => " + queue);

 System.out.println("Set => " + set);

 System.out.println("Map => " + map);

 System.out.println("---------------------------------------");

 Collections.sort(list);

 System.out.println("List in ascending order => " + list);

 System.out.println("Largest element in set => " + Collections.max(set));

 System.out.println("Smallest element in queue => " + Collections.min(queue));

 Collections.reverse(list);

 System.out.println("List in reverse order => " + list);

 Collections.shuffle(list);

 System.out.println("List after shuffle => " + list);

 }

}

Legacy Class in Java :

In the past decade, the Collection framework didn't include in Java. In the early version of Java, we have

several classes and interfaces which allow us to store objects. After adding the Collection framework in JSE

1.2, for supporting the collections framework, these classes were re-engineered. So, classes and interfaces that

formed the collections framework in the older version of Java are known as Legacy classes. For supporting

generic in JDK5, these classes were re-engineered.

All the legacy classes are synchronized. The java.util package defines the following legacy classes:

1. HashTable

2. Stack

https://www.javatpoint.com/collections-in-java
https://www.javatpoint.com/java-tutorial

Department of CSE Page 48 of 70

3. Dictionary

4. Properties

5. Vector

Vector Class

Vector is a special type of ArrayList that defines a dynamic array. ArrayList is not synchronized

while vector is synchronized. The vector class has several legacy methods that are not present in the collection

framework. Vector implements Iterable after the release of JDK 5 that defines the vector is fully compatible

with collections, and vector elements can be iterated by the for-each loop.

Vector class provides the following four constructors:

44.7M

993

OOPs Concepts in Java

1) Vector()

It is used when we want to create a default vector having the initial size of 10.

2) Vector(int size)

https://www.javatpoint.com/java-vector

Department of CSE Page 49 of 70

It is used to create a vector of specified capacity. It accepts size as a parameter to specify the initial capacity.

3) Vector(int size, int incr)

It is used to create a vector of specified capacity. It accepts two parameters size and increment parameters to

specify the initial capacity and the number of elements to allocate each time when a vector is resized for the

addition of objects.

4) Vector(Collection c)

It is used to create a vector with the same elements which are present in the collection. It accepts the collection

as a parameter.

VectorExample.java

import java.util.*;

public class VectorExample

{

 public static void main(String[] args)

 {

 Vector<String> vec = new Vector<String>();

 vec.add("Emma");

 vec.add("Adele");

 vec.add("Aria");

 vec.add("Aidan");

 vec.add("Adriana");

 vec.add("Ally");

 Enumeration<String> data = vec.elements();

 while(data.hasMoreElements())

 {

 System.out.println(data.nextElement());

 }

 }

}

Output:

Department of CSE Page 50 of 70

Hashtable Class:

The Hashtable class is similar to HashMap. It also contains the data into key/value pairs. It doesn't allow to

enter any null key and value because it is synchronized. Just like Vector, Hashtable also has the following four

constructors.

1) Hashtable()

It is used when we need to create a default HashTable having size 11.

2) Hashtable(int size)

It is used to create a HashTable of the specified size. It accepts size as a parameter to specify the initial size of

it.

3) Hashtable(int size, float fillratio)

It creates the Hashtable of the specified size and fillratio. It accepts two parameters, size (of type int) and

fillratio (of type float). The fillratio must be between 0.0 and 1.0. The fillratio parameter determines how full

the hash table can be before it is resized upward. It means when we enter more elements than its capacity or

size than the Hashtable is expended by multiplying its size with the fullratio.

4) Hashtable(Map< ? extends K, ? extends V> m)

It is used to create a Hashtable. The Hashtable is initialized with the elements present in m. The capacity of the

Hashtable is the twice the number elements present in m.

HashtableExample.java

import java.util.*;

class HashtableExample

{

 public static void main(String args[])

 {

https://www.javatpoint.com/java-hashtable
https://www.javatpoint.com/java-hashmap

Department of CSE Page 51 of 70

 Hashtable<Integer,String> student = new Hashtable<Integer, String>();

 student.put(new Integer(101), "Emma");

 student.put(new Integer(102), "Adele");

 student.put(new Integer(103), "Aria");

 student.put(new Integer(104), "Ally");

 Set dataset = student.entrySet();

 Iterator iterate = dataset.iterator();

 while(iterate.hasNext())

 {

 Map.Entry map=(Map.Entry)iterate.next();

 System.out.println(map.getKey()+" "+map.getValue());

 }

 }

}

Output:

Properties Class

Properties class extends Hashtable class to maintain the list of values. The list has both the key and the value of

type string. The Property class has the following two constructors:

1) Properties()

It is used to create a Properties object without having default values.

2) Properties(Properties propdefault)

It is used to create the Properties object using the specified parameter of properties type for its default value.

The main difference between the Hashtable and Properties class is that in Hashtable, we cannot set a default

value so that we can use it when no value is associated with a certain key. But in the Properties class, we can

set the default value.

PropertiesExample.java

https://www.javatpoint.com/properties-class-in-java

Department of CSE Page 52 of 70

import java.util.*;

public class PropertiesExample

{

 public static void main(String[] args)

 {

 Properties prop_data = new Properties();

 prop_data.put("India", "Movies.");

 prop_data.put("United State", "Nobel Laureates and Getting Killed by Lawnmowers.");

 prop_data.put("Pakistan", "Field Hockey.");

 prop_data.put("China", "CO2 Emissions and Renewable Energy.");

 prop_data.put("Sri Lanka", "Cinnamon.");

 Set< ?> set_data = prop_data.keySet();

 for(Object obj: set_data)

 {

 System.out.println(obj+" is famous for "+ prop_data.getProperty((String)obj));

 }

 }

}

Output:

Stack Class

Stack class extends Vector class, which follows the LIFO(LAST IN FIRST OUT) principal for its elements.

The stack implementation has only one default constructor, i.e., Stack().

1) Stack()

It is used to create a stack without having any elements.

There are the following methods can be used with Stack class:

https://www.javatpoint.com/java-stack

Department of CSE Page 53 of 70

1. The push() method is used to add an object to the stack. It adds an element at the top of the stack.

2. The pop() method is used to get or remove the top element of the stack.

3. The peek() method is similar to the pop() method, but it can't remove the stack's top element using it.

4. The empty() method is used to check the emptiness of the stack. It returns true when the stack has no

elements in it.

5. The search() method is used to ensure whether the specified object exists on the stack or not.

StackExample.java

import java.util.*;

class StackExample {

 public static void main(String args[]) {

 Stack stack = new Stack();

 stack.push("Emma");

 stack.push("Adele");

 stack.push("Aria");

 stack.push("Ally");

 stack.push("Paul");

 Enumeration enum1 = stack.elements();

 while(enum1.hasMoreElements())

 System.out.print(enum1.nextElement()+" ");

 stack.pop();

 stack.pop();

 stack.pop();

 System.out.println("\nAfter removing three elements from stack");

 Enumeration enum2 = stack.elements();

 while(enum2.hasMoreElements())

 System.out.print(enum2.nextElement()+" ");

 }

}

Output:

Department of CSE Page 54 of 70

Dictionary Class

The Dictionary class operates much like Map and represents the key/value storage repository. The Dictionary

class is an abstract class that stores the data into the key/value pair. We can define the dictionary as a list of

key/value pairs.

The dictionary class provides the following methods:

1. The put(K key, V value) method is used to add a key-value pair to the dictionary.

2. The elements() method is used to get the value representation in the dictionary.

3. The get(Object key) method is used to get the value mapped with the argumented key in the dictionary.

4. The isEmpty() method is used to check whether the dictionary is empty or not.

5. The keys() method is used to get the key representation in the dictionary.

6. The remove(Object key) method removes the data from the dictionary.

7. The size() method is used to get the size of the dictionary.

DictionaryExample.java

import java.util.*;

public class DictionaryExample

{

 public static void main(String[] args)

 {

 // Initializing Dictionary object

 Dictionary student = new Hashtable();

 // Using put() method to add elements

 student.put("101", "Emma");

 student.put("102", "Adele");

 student.put("103", "Aria");

 student.put("104", "Ally");

 student.put("105", "Paul");

Department of CSE Page 55 of 70

 //Using the elements() method

 for (Enumeration enum1 = student.elements(); enum1.hasMoreElements();)

 {

 System.out.println("The data present in the dictionary : " + enum1.nextElement());

 }

 // Using the get() method

 System.out.println("\nName of the student 101 : " + student.get("101"));

 System.out.println("Name of the student 102 : " + student.get("102"));

 //Using the isEmpty() method

 System.out.println("\n Is student dictionary empty? : " + student.isEmpty() + "\n");

 // Using the keys() method

 for (Enumeration enum2 = student.keys(); enum2.hasMoreElements();)

 {

 System.out.println("Ids of students: " + enum2.nextElement());

 }

 // Using the remove() method

 System.out.println("\nDelete : " + student.remove("103"));

 System.out.println("The name of the deleted student : " + student.get("123"));

 System.out.println("\nThe size of the student dictionary is : " + student.size());

 }

}

Output:

Department of CSE Page 56 of 70

Stack Class in Java

Java Collection framework provides a Stack class that models and implements a Stack data structure. The

class is based on the basic principle of last-in-first-out. In addition to the basic push and pop operations, the

class provides three more functions of empty, search, and peek. The class can also be said to extend Vector and

treats the class as a stack with the five mentioned functions. The class can also be referred to as the subclass of

Vector. The below diagram shows the hierarchy of the Stack class:

https://www.geeksforgeeks.org/collections-in-java-2/
https://www.geeksforgeeks.org/stack-data-structure/

Department of CSE Page 57 of 70

The class supports one default constructor Stack() which is used to create an empty stack.

Declaration:

public class Stack<E> extends Vector<E>

All Implemented Interfaces:

 Serializable: It is a marker interface that classes must implement if they are to be serialized and

deserialized.

 Cloneable: This is an interface in Java which needs to be implemented by a class to allow its objects to be

cloned.

 Iterable<E>: This interface represents a collection of objects which is iterable — meaning which can be

iterated.

 Collection<E>: A Collection represents a group of objects known as its elements. The Collection interface

is used to pass around collections of objects where maximum generality is desired.

 List<E>: The List interface provides a way to store the ordered collection. It is a child interface of

Collection.

 RandomAccess: This is a marker interface used by List implementations to indicate that they support fast

(generally constant time) random access.

How to Create a Stack?

In order to create a stack, we must import java.util.stack package and use the Stack() constructor of this class.

The below example creates an empty Stack.

Stack<E> stack = new Stack<E>();

Here E is the type of Object.

Example:

 Java

https://www.geeksforgeeks.org/list-interface-java-examples/

Department of CSE Page 58 of 70

// Java code for stack implementation

import java.io.*;

import java.util.*;

class Test

{

 // Pushing element on the top of the stack

 static void stack_push(Stack<Integer> stack)

 {

 for(int i = 0; i < 5; i++)

 {

 stack.push(i);

 }

 }

 // Popping element from the top of the stack

 static void stack_pop(Stack<Integer> stack)

 {

 System.out.println("Pop Operation:");

 for(int i = 0; i < 5; i++)

Department of CSE Page 59 of 70

 {

 Integer y = (Integer) stack.pop();

 System.out.println(y);

 }

 }

 // Displaying element on the top of the stack

 static void stack_peek(Stack<Integer> stack)

 {

 Integer element = (Integer) stack.peek();

 System.out.println("Element on stack top: " + element);

 }

 // Searching element in the stack

 static void stack_search(Stack<Integer> stack, int element)

 {

 Integer pos = (Integer) stack.search(element);

 if(pos == -1)

 System.out.println("Element not found");

 else

 System.out.println("Element is found at position: " + pos);

Department of CSE Page 60 of 70

 }

 public static void main (String[] args)

 {

 Stack<Integer> stack = new Stack<Integer>();

 stack_push(stack);

 stack_pop(stack);

 stack_push(stack);

 stack_peek(stack);

 stack_search(stack, 2);

 stack_search(stack, 6);

 }

}

Output:

Pop Operation:

4

3

2

1

0

Element on stack top: 4

Element is found at position: 3

Element not found

Department of CSE Page 61 of 70

Vector Class in Java
The Vector class implements a growable array of objects. Vectors fall in legacy classes, but now it is fully

compatible with collections. It is found in java.util package and implement the List interface, so we can use all

the methods of List interface as shown below as follows:

 Vector implements a dynamic array that means it can grow or shrink as required. Like an array, it contains

components that can be accessed using an integer index.

 They are very similar to ArrayList, but Vector is synchronized and has some legacy methods that the

collection framework does not contain.

 It also maintains an insertion order like an ArrayList. Still, it is rarely used in a non-thread environment as it

is synchronized, and due to this, it gives a poor performance in adding, searching, deleting, and updating its

elements.

 The Iterators returned by the Vector class are fail-fast. In the case of concurrent modification, it fails and

throws the ConcurrentModificationException.

Syntax:

public class Vector<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, Serializable

Here, E is the type of element.

 It extends AbstractList and implements List interfaces.

 It implements Serializable, Cloneable, Iterable<E>, Collection<E>, List<E>, RandomAccess interfaces.

 The directly known subclass is Stack.

Important points regarding the Increment of vector capacity are as follows:
If the increment is specified, Vector will expand according to it in each allocation cycle. Still, if the increment

is not specified, then the vector’s capacity gets doubled in each allocation cycle. Vector defines three protected

data members:

 int capacityIncreament: Contains the increment value.

 int elementCount: Number of elements currently in vector stored in it.

 Object elementData[]: Array that holds the vector is stored in it.

https://www.geeksforgeeks.org/java-util-package-java/
https://www.geeksforgeeks.org/list-interface-java-examples/
https://www.geeksforgeeks.org/arraylist-in-java/
https://www.geeksforgeeks.org/abstractlist-in-java-with-examples/
https://www.geeksforgeeks.org/list-interface-java-examples/
https://www.geeksforgeeks.org/stack-class-in-java/

Department of CSE Page 62 of 70

Common Errors in the declaration of Vectors are as follows:

 Vector throws an IllegalArgumentException if the InitialSize of the vector defined is negative.

 If the specified collection is null, It throws NullPointerException.

Constructors

1. Vector(): Creates a default vector of the initial capacity is 10.

Vector<E> v = new Vector<E>();

2. Vector(int size): Creates a vector whose initial capacity is specified by size.

Vector<E> v = new Vector<E>(int size);

3. Vector(int size, int incr): Creates a vector whose initial capacity is specified by size and increment is

specified by incr. It specifies the number of elements to allocate each time a vector is resized upward.

Vector<E> v = new Vector<E>(int size, int incr);

4. Vector(Collection c): Creates a vector that contains the elements of collection c.

Vector<E> v = new Vector<E>(Collection c);

StringTokenizer in Java

The java.util.StringTokenizer class allows you to break a string into tokens. It is simple way to

break string.

It doesn't provide the facility to differentiate numbers, quoted strings, identifiers etc.

Constructors of StringTokenizer class

There are 3 constructors defined in the StringTokenizer class.

Java BitSet Class

The Java BitSet class implements a vector of bits. The BitSet grows automatically as more bits are needed. The

BitSet class comes under java.util package. The BitSet class extends the Object class and provides the

implementation of Serializable and Cloneable interfaces.

Each component of bit set contains at least one Boolean value. The contents of one BitSet may be changed by

other BitSet using logical AND, logical OR and logical exclusive OR operations. The index of bits of BitSet

class is represented by positive integers.

Each element of bits contains either true or false value. Initially, all bits of a set have the false value. A BitSet is

not safe for multithreaded use without using external synchronization.

Department of CSE Page 63 of 70

Date class in Java (With Examples)
The class Date represents a specific instant in time, with millisecond precision. The Date class of java.util

package implements Serializable, Cloneable and Comparable interface. It provides constructors and methods to

deal with date and time with java.

Constructors :

 Date() : Creates date object representing current date and time.

 Date(long milliseconds) : Creates a date object for the given milliseconds since January 1, 1970, 00:00:00

GMT.

 Date(int year, int month, int date)

 Date(int year, int month, int date, int hrs, int min)

 Date(int year, int month, int date, int hrs, int min, int sec)

 Date(String s)

Note : The last 4 constructors of the Date class are Deprecated.

// Java program to demonstrate constuctors of Date

import java.util.*;

public class Main

{

 public static void main(String[] args)

 {

 Date d1 = new Date();

 System.out.println("Current date is " + d1);

 Date d2 = new Date(2323223232L);

 System.out.println("Date represented is "+ d2);

 }

}

Output:

Department of CSE Page 64 of 70

Current date is Tue Jul 12 18:35:37 IST 2016

Date represented is Wed Jan 28 02:50:23 IST 1970

Calendar Class in Java with examples:

Calendar class in Java is an abstract class that provides methods for converting date between a specific instant

in time and a set of calendar fields such as MONTH, YEAR, HOUR, etc. It inherits Object class and

implements the Comparable, Serializable, Cloneable interfaces.

As it is an Abstract class, so we cannot use a constructor to create an instance. Instead, we will have to use the

static method Calendar.getInstance() to instantiate and implement a sub-class.

 Calendar.getInstance(): return a Calendar instance based on the current time in the default time zone with

the default locale.

 Calendar.getInstance(TimeZone zone)

 Calendar.getInstance(Locale aLocale)

 Calendar.getInstance(TimeZone zone, Locale aLocale)

Java program to demonstrate getInstance() method:

// Date getTime(): It is used to return a

// Date object representing this

// Calendar's time value.

import java.util.*;

public class Calendar1 {

 public static void main(String args[])

 {

 Calendar c = Calendar.getInstance();

 System.out.println("The Current Date is:" + c.getTime());

 }

}

Output:

The Current Date is:Tue Aug 28 11:10:40 UTC 2018

Department of CSE Page 65 of 70

Generating random numbers in Java :
Java provides three ways to generate random numbers using some built-in methods and classes as listed below:

 java.util.Random class

 Math.random method : Can Generate Random Numbers of double type.

 ThreadLocalRandom class

1) java.util.Random
 For using this class to generate random numbers, we have to first create an instance of this class and then

invoke methods such as nextInt(), nextDouble(), nextLong() etc using that instance.

 We can generate random numbers of types integers, float, double, long, booleans using this class.

 We can pass arguments to the methods for placing an upper bound on the range of the numbers to be

generated. For example, nextInt(6) will generate numbers in the range 0 to 5 both inclusive.

// A Java program to demonstrate random number generation

// using java.util.Random;

import java.util.Random;

public class generateRandom{

 public static void main(String args[])

 {

 // create instance of Random class

 Random rand = new Random();

 // Generate random integers in range 0 to 999

 int rand_int1 = rand.nextInt(1000);

 int rand_int2 = rand.nextInt(1000);

Department of CSE Page 66 of 70

 // Print random integers

 System.out.println("Random Integers: "+rand_int1);

 System.out.println("Random Integers: "+rand_int2);

 // Generate Random doubles

 double rand_dub1 = rand.nextDouble();

 double rand_dub2 = rand.nextDouble();

 // Print random doubles

 System.out.println("Random Doubles: "+rand_dub1);

 System.out.println("Random Doubles: "+rand_dub2);

 }

}

 Output:

 Random Integers: 547

 Random Integers: 126

 Random Doubles: 0.8369779739988428

 Random Doubles: 0.5497554388209912

Java formatter:

Java Formatter is a utility class that can make life simple when working with formatting stream output in Java.

It is built to operate similarly to the C/C++ printf function. It is used to format and output data to a specific

destination, such as a string or a file output stream. This article explores the class and illustrate some of its

utility in everyday programming in Java.

https://www.developer.com/java/

Department of CSE Page 67 of 70

A Few Quick Examples

Using argument_index

Formatter f=new Formatter();

f.format("%3$3s %2$3s %1$3s", "fear",

 "strengthen", "weakness");

System.out.println(f);

Regionalize Output

StringBuilder builder=new StringBuilder();

Formatter f=new Formatter(builder);

f.format(Locale.FRANCE,"%.5f", -1325.789);

System.out.println(f);

Formatter f2=new Formatter();

f2.format(Locale.CANADA, "%.5f", -1325.789);

System.out.println(f2);

Regionalize Date

Formatter f3=new Formatter();

f3.format(Locale.FRENCH,"%1$te %1$tB, %1$tY",

 Calendar.getInstance());

System.out.println(f3);

Department of CSE Page 68 of 70

Formatter f4=new Formatter();

f4.format(Locale.GERMANY,"%1$te %1$tB, %1$tY",

 Calendar.getInstance());

System.out.println(f4);

Using %n and %% Specifiers

Formatter f = new Formatter();

f.format("Format%n %.2f%% complete", 46.6);

System.out.println(f);

Scanner Class in Java

Scanner is a class in java.util package used for obtaining the input of the primitive types like int, double, etc.

and strings. It is the easiest way to read input in a Java program, though not very efficient if you want an input

method for scenarios where time is a constraint like in competitive programming.

 To create an object of Scanner class, we usually pass the predefined object System.in, which represents the

standard input stream. We may pass an object of class File if we want to read input from a file.

 To read numerical values of a certain data type XYZ, the function to use is nextXYZ(). For example, to read

a value of type short, we can use nextShort()

 To read strings, we use nextLine().

 To read a single character, we use next().charAt(0). next() function returns the next token/word in the input

as a string and charAt(0) function returns the first character in that string.

Let us look at the code snippet to read data of various data types.

// Java program to read data of various types using Scanner class.

import java.util.Scanner;

public class ScannerDemo1

{

Department of CSE Page 69 of 70

 public static void main(String[] args)

 {

 // Declare the object and initialize with

 // predefined standard input object

 Scanner sc = new Scanner(System.in);

 // String input

 String name = sc.nextLine();

 // Character input

 char gender = sc.next().charAt(0);

 // Numerical data input

 // byte, short and float can be read

 // using similar-named functions.

 int age = sc.nextInt();

 long mobileNo = sc.nextLong();

 double cgpa = sc.nextDouble();

 // Print the values to check if the input was correctly obtained.

 System.out.println("Name: "+name);

 System.out.println("Gender: "+gender);

Department of CSE Page 70 of 70

 System.out.println("Age: "+age);

 System.out.println("Mobile Number: "+mobileNo);

 System.out.println("CGPA: "+cgpa);

 }

}

Input :

Geek

F

40

9876543210

9.9

Output :

Name: Geek

Gender: F

Age: 40

Mobile Number: 9876543210

CGPA: 9.9

	UNIT-4
	Collection Framework in Java
	What is framework in java
	What is Collection framework
	ArrayList class declaration
	Constructors of Java ArrayList

	vector
	Example of Java Vector

	Java LinkedList class:
	Hierarchy of LinkedList class
	Doubly Linked List
	LinkedList class declaration
	Constructors of Java LinkedList
	Java LinkedList Example:
	Hashtable class declaration
	Hashtable class Parameters
	Constructors of Java Hashtable class

	Java TreeSet class:
	Hierarchy of TreeSet class
	TreeSet class declaration
	Constructors of Java TreeSet class
	Java TreeSet Examples
	Java TreeSet Example 1:
	Java TreeSet Example 2:
	PriorityQueue class:
	PriorityQueue class declaration
	Java PriorityQueue Example

	ArrayDeque class
	ArrayDeque Hierarchy
	ArrayDeque class declaration

	Java ArrayDeque Example
	Java ArrayDeque Example: offerFirst() and pollLast()
	Java ArrayDeque Example: Book
	Limitations of Iterator:
	How to use Java Iterator?
	Java Iterator Methods
	Example of Java Iterator

	Java For-each Loop | Enhanced For Loop
	Advantages
	Syntax
	How it works?
	For-each loop Example: Traversing the array elements

	Map Interface in Java
	Creating Map Objects
	Characteristics of a Map Interface
	Methods in Map Interface
	Class 1: HashMap
	Class 2: LinkedHashMap
	Class 3: TreeMap

	Comparator Interface in Java with Examples :
	How do the sort() method of Collections class work?
	Sort collection by more than one field

	Collection algorithms in java
	Legacy Class in Java :
	Vector Class
	Hashtable Class:
	Properties Class
	Stack Class
	Dictionary Class

	Stack Class in Java
	How to Create a Stack?

	Vector Class in Java
	Constructors

	StringTokenizer in Java
	Constructors of StringTokenizer class

	Java BitSet Class
	Date class in Java (With Examples)
	Calendar Class in Java with examples:
	Generating random numbers in Java :
	A Few Quick Examples
	Using argument_index
	Regionalize Output
	Regionalize Date
	Using %n and %% Specifiers

	Scanner Class in Java

